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INTRODUCTION: Barrier tissues are con-
stitutive targets of environmental stressors
and are home to a highly diverse microbiota.
When the immune system encounters these
noninvasive microbes, one possible result is
the induction of cognate T cell responses that
control various aspects of tissue function, in-
cluding antimicrobial defense and tissue re-
pair. Given the extraordinary number of antigens
expressed by the microbiota, a substantial frac-
tion of barrier tissue–resident T cells are ex-
pected to be commensal-specific, accumulating
over time in response to successive exposure to
new commensals. Because barrier tissues are
defined by the constitutive coexistence of com-
mensals and commensal-reactive lymphocytes,
any understanding of tissue homeostasis, re-
sponse to injury, and tissue-specific pathologies
must occur in the context of this fundamental
dialog.

RATIONALE: The skin serves as a primary
interface with the environment and is conse-
quently a constitutive target of environmental
stressors mediated by physical damage or in-
vasive pathogens. Tissue protection from these

challenges relies on rapid and coordinated local
responses tailored to both the microenviron-
ment and the nature of the instigating injury.
Our study explored whether commensal-specific
T cells can act as tissue sentinels, allowing rapid
adaptation to defined injuries, and how dys-
regulation of these responses may have path-
ogenic consequences.

RESULTS:Homeostatic encounters with com-
mensal microbes promoted the induction of
commensal-specific interleukin-17A (IL-17A)–
producing T cells [CD4+ (TH17) andCD8

+ (TC17)]
that persisted as tissue-resident memory cells.
Surprisingly, commensal-specific T cells were
characterized by coexpression of classically an-
tagonistic transcription factors (RORgt and
GATA-3) that control the respective expression
of type 17 and type 2 programs. Consequently,
commensal-specific T cells displayed a hybrid
chromatin landscape that underlies the co-
expression of a broad type 2 transcriptome,
including the type 2 effector cytokines IL-5
and IL-13. Notably, during homeostasis, RORgt+

T cells expressed type 2 cytokinemRNAwithout
subsequent protein translation. By contrast, in

the context of tissue challenges such as chitin
injection or insect bites, commensal-specific
RORgt+ T cells were able to produce type 2
cytokines (IL-5 and IL-13). The spontaneous
release of type 2 cytokines by these cells was
also observed in the context of local defects
in immune regulation associatedwith impaired
regulatory T cell function. Alarmins associated
with tissue damage and inflammation, such
as IL-1, IL-18, IL-25, and IL-33, were able to
superimpose a type 2 effector program on

both TC17 and TH17 cells
in the context of T cell re-
ceptor engagement.Using
an IL-17A fate-mapping
strategy, we found that
IL-17A–committedRORgt+

T cells and their IL-17A−

RORgt+ counterparts both produced type 2
cytokines in response to tissue alarmins. Such
cellular plasticity allows commensal-specific
type 17 cells to promote IL-17A–mediated
antimicrobial defense under homeostatic con-
ditions, as well as tissue repair in an IL-13–
dependent manner in the context of tissue
injury.

CONCLUSION: Our work describes a tissue
checkpoint that relies on the remarkable
plasticity and adaptability of tissue-resident
commensal-specific T cells. We propose that
this feature may also have important implica-
tions in the etiology of tissue-specific inflam-
matory disorders. The extraordinary number
of both commensal-derived antigens and T cells
at barrier sites suggests that the ability of
commensal-specific T cells to functionally
adapt to injurymay play a fundamental role in
controlling tissue physiology.▪
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Poised type 2 immunity of commensal-specific T cells promotes rapid adaptation to tissue injury. Commensal-specific T cells produce
IL-17A under homeostatic conditions for antimicrobial defense while harboring a poised type 2 transcriptome. Tissue injury licenses type 2
immune potential of commensal-specific type 17 T cells, thereby promoting tissue repair. Impaired immune regulation unleashes type 2
cytokine production from commensal-specific CD8+ TC17 cells.
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Commensal-specific T cell
plasticity promotes rapid tissue
adaptation to injury
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Seong-Ji Han1, Margery Smelkinson4, Shurjo K. Sen5, Allyson L. Byrd1*,
Michel Enamorado1, Chen Yao2, Samira Tamoutounour1, Francois Van Laethem6†,
Charlotte Hurabielle1,7, Nicholas Collins1, Andrea Paun8, Rosalba Salcedo9,
John J. O’Shea2, Yasmine Belkaid1,3‡

Barrier tissues are primary targets of environmental stressors and are home to the largest
number of antigen-experienced lymphocytes in the body, including commensal-specific
T cells. We found that skin-resident commensal-specific T cells harbor a paradoxical
program characterized by a type 17 program associated with a poised type 2 state. Thus,
in the context of injury and exposure to inflammatory mediators such as interleukin-18,
these cells rapidly release type 2 cytokines, thereby acquiring contextual functions. Such
acquisition of a type 2 effector program promotes tissue repair. Aberrant type 2 responses
can also be unleashed in the context of local defects in immunoregulation. Thus,
commensal-specific T cells co-opt tissue residency and cell-intrinsic flexibility as a means
to promote both local immunity and tissue adaptation to injury.

B
arrier tissues are constitutive targets of
environmental stressors as well as primary
sites of exposure to symbiotic and patho-
genicmicrobes. As such, under homeosta-
sis, barrier tissues are home to vast numbers

of antigen-experienced lymphocytes. The numer-
ous and diverse microbes that colonize these
tissues, referred to as the microbiota, play a fun-
damental role in the induction and quality of
these local immune responses, including those
that are directed at the microbiota itself (1–4).
Indeed, far from being ignored, microbes at all
barrier surfaces are actively recognized by the
immune system. Encounters with noninvasive
symbionts can lead to the induction of cognate

T cell responses (1–4). This tonic recognition pro-
motes a highly physiological form of adaptive
immunity that can control distinct aspects of
tissue function, including antimicrobial defense
and tissue repair (5, 6). Because of the extraor-
dinary number of antigens expressed by the
microbiota, a substantial fraction of barrier tissue-
resident T cells are expected to be commensal-
specific, accumulating over time in response to
successive exposure to new commensals. This
understanding of host-microbiota interactions
has important implications for our understand-
ing of host immunity and pathologies. Because
barrier tissues are defined by the constitutive
coexistence of commensals (and associated anti-
gens) and commensal-reactive lymphocytes, our
understanding of tissue homeostasis, response to
injury, and tissue-specific pathologiesmust occur
in the context of this fundamental dialog.
The skin serves as a primary interface with

the environment and is consequently a consti-
tutive target of environmental stressors medi-
ated by physical damage, invasive pathogens,
impaired immune regulation, or the nutritional
state of the host. Tissue protection from these
challenges relies on rapid and coordinated local
responses tailored to both the microenvironment
and the nature of the instigating injury. Recently,
the discovery that cells such as innate lymphoid
cells (ILCs) can rapidly respond to mediators
released during tissue damage has provided a
framework to begin to understand this phenom-
enon. Whether tissue-resident T cells, particu-
larly those specific to commensals, can also act
as tissue sentinels allowing rapid adaptation to

defined injury remains unknown. Here, we ex-
plored the unique features of commensal-specific
T cells and how their distinct wiring might
promote physiological or pathological tissue
adaptation.

Acute injury licenses type 2 cytokine
production from commensal-specific
type 17 T cells

The skin is home to a number of resident lympho-
cytes, some of which recognize the microbiota
(4, 6–8). We first assessed whether commensal-
specific T cells could develop as nonrecirculat-
ing tissue-resident memory cells (TRM), a subset
of memory T cells previously shown to accumu-
late in tissues upon pathogen encounter and
promote local immunity (9). Staphylococcus
epidermidis colonization of the skin promotes
the noninflammatory accumulation of both CD4+

[T helper 1 (TH1) and TH17] and CD8+ T cells
[T cytotoxic 1 (TC1) and TC17] (4). A large fraction
(>80%) of these S. epidermidis–specific poly-
clonal CD8+ T cells are nonclassically restricted
(6). S. epidermidis–specific CD8+ T cells can be
tracked via the use of a peptide–major histocom-
patibility complex (MHC) tetramer (f-MIIINA:
H2-M3) (6) and newly generated T cell receptor
(TCR)–transgenic mice (BowieTg). Both tools
recapitulate the S. epidermidis–specific polyclonal
CD8+ T cell response, including cytokine po-
tential, skin-homing, and distribution of the tis-
sue residency markers CD69 and CD103 (9) (Fig. 1,
A to C). To assess tissue residency, we generated
S. epidermidis–colonized parabiotic mice, which
establish chimerism through joint circulation
(10) (fig. S1A). In contrast to lymphoid organs,
where cells equilibrated, f-MIIINA:H2-M3+ CD8+

T cells within the skin were host-derived (97.1 ±
2.4%) and coexpressed CD103 and CD69 (Fig. 1,
D and E). Thus, commensal-specific T cells can
develop as long-lived tissue-resident memory
T cells.
Given the fundamental role of the skin as a

protective barrier, we sought to determine the
impact of environmental stressors on commensal-
specific tissue-resident T cells. After colonization,
S. epidermidis–specific polyclonal CD8+ T cells
were identified as T-bet+CCR6− TC1 cells or
RORgt+CCR6+ TC17 cells [of which ~30% have
interleukin (IL)–17A production potential] (Fig.
1, F and G). Although the intradermal injection
of chitin or sand fly (Lutzomyia longipalpis)
bites had no impact on the potential for IL-17A
and interferon (IFN)–g production by TC17 and
TC1 cells, respectively (Fig. 1H), both stressors
revealed a surprising potential for the produc-
tion of IL-5 and IL-13 from S. epidermidis–
elicited TC17 cells, including f-MIIINA:H2-M3+

CD8+ T cells (Fig. 1, H and I, and fig. S1, B and
C). Increased type 2 cytokine production after
chitin or sand fly challenge was also observed
from RORgt-expressing CD4+ T cells (TH17)
elicited by S. epidermidis (fig. S1D). Thus, RORgt+

T cells (both CD8+ and CD4+ T cells) elicited
by encounter with a commensal may have the
unexpected potential to produce type 2 cytokines
in response to defined tissue challenges.
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Fig. 1. Acute injury licenses type 2
cytokine production from commensal-
specific type 17 cells. (A to C) S. epidermidis–
specific TCR-transgenic CD8+ Tcells (BowieTg)
were adoptively transferred to wild-type mice
before colonization with S. epidermidis. (A)
Representative contour plots of IL-17A and
IFN-g production potential; (B) expression of
tissue residency markers CD69 and CD103 by
indicated CD8+ T cell populations; (C) repre-
sentative confocal imaging volume projected
along the z axis of epidermal skin from S. epidermidis–colonized mice. (D and E)
Conjoined pairs of S. epidermidis–colonized CD45.1 and CD45.2 mice were
analyzed 90 days after parabiosis surgery for cellular origin and phenotype.
(D) Frequency of host-derived f-MIIINA:H2-M3+ CD8+ T cells in indicated
tissues; SLN, skin-draining lymph nodes. (E) Representative contour plot of
CD69 and CD103 expression by skin f-MIIINA:H2-M3+ CD8+ T cells. (F)
Representative contour plot of RORgt and T-bet expression by CD8+ T cells
from the skin of S. epidermidis–colonized wild-type mice. (G) Representative
contour plots of RORgt, CCR6, and IL-17A expression by CD8+ Tcells from the
skin of S. epidermidis–colonized wild-type mice. (H and I) S. epidermidis–

colonized wild-type mice were exposed to bites from sand flies (L. longipalpis)
or injected intradermally (i.d.) with PBS or chitin. (H) Frequencies of TC1
and TC17 cells with cytokine-producing potential from the skin of S.
epidermidis–colonized wild-type mice after skin injury. (I) Representative
contour plots of IL-5 and IL-13 production potential by CD8+ T cells from
the skin of S. epidermidis–colonized wild-type mice after skin injury.
Numbers in representative plots indicate means ± SD. Bar graphs show
means ± SD. Data represent at least two experiments with four to six mice
per group. **P < 0.01 (one-way ANOVA with Holm-Šidák multiple-
comparison test).
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Fig. 2. Local defects
in immunoregulation
unleash type 2
immunity from
commensal-specific
T cells. (A) Represent-
ative contour plots of
RORgt and GATA-3
expression by skin
CD8+ T cells from
S. epidermidis–colonized
wild-type mice. (B) Rep-
resentative histogram
plots of GATA-3
expression by RORgt+

CD4+ TH17 cells from
the skin of commensal-
colonized wild-type
mice. (C) Representa-
tive confocal imaging
volume-projected
along the z axis of
epidermal skin from
S. epidermidis–colonized
Foxp3gfp mice. (D) Fre-
quencies of Foxp3+ Treg
cells coexpressing
lineage-defining
transcription factors
(LDTFs) within indicated
tissues of naïve wild-
type mice. VAT, visceral
adipose tissue; cLP,
colonic lamina propria;
siLP, small intestinal
lamina propria; MAT,
mesenteric adipose
tissue; SLN, skin-
draining lymph node;
PP, Peyer’s patch; PLN,
para-aortic lymph
node; MLN, mesenteric
lymph node; BM, bone
marrow. (E) Represent-
ative contour plots of
Foxp3 and CD25
expression by skin
CD4+ Tcells from naïve
Foxp3YFP-CreGata3fl/wt

and Foxp3YFP-CreGata3fl/fl

mice. (F) Representative
cutaneous lymphadeno-
pathy in Foxp3YFP-Cre-

Gata3fl/fl compared to
Foxp3YFP-CreGata3fl/wt

control mice. (G) Fre-
quencies of IL-5– and IL-13–producing skin CD4+ Tcells from naïve
Foxp3YFP-CreGata3fl/wt and Foxp3YFP-CreGata3fl/fl mice. (H) Frequencies
of skin eosinophils and basophils from naïve Foxp3YFP-CreGata3fl/wt and
Foxp3YFP-CreGata3fl/fl mice. (I) Cumulative incidence of skin inflammation
among naïve Foxp3YFP-CreGata3fl/wt and Foxp3YFP-CreGata3fl/fl mice.
(J) Representative histological micrograph of skin tissue from naïve
Foxp3YFP-CreGata3fl/wt and Foxp3YFP-CreGata3fl/fl mice. Scale bars, 250 mm.
(K) Representative contour plots of CD8b expression and IL-5 production
potential by TCRb+ Tcells from the skin of S. epidermidis–colonized
Foxp3YFP-CreGata3fl/wt and Foxp3YFP-CreGata3fl/fl mice. (L) Total numbers

of IL-5– and IL-13–producing CD8+ Tcells from the skin of S. epidermidis–
colonized Foxp3YFP-CreGata3fl/wt and Foxp3YFP-CreGata3fl/fl mice.
(M) Representative contour plots of IL-5 and IL-13 production byCD8+ Tcells in
Foxp3YFP-CreGata3fl/wt and Foxp3YFP-CreGata3fl/fl mice adoptively transferred
with BowieTg Tcells before colonization with S. epidermidis. Numbers in
representative plots indicate means ± SD. Each dot represents an individual
mouse. Data represent at least two experiments with three to seven mice per
group. Cumulative skin inflammation data (I) represent 25 mice per genotype.
*P < 0.05, **P < 0.01, ***P < 0.001 as calculated using Student t test [(G), (H)]
or one-way ANOVA with Holm-Šidák multiple comparison test [(D), (L)].
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Local defects in immunoregulation
unleash type 2 immunity from
commensal-specific T cells
Flow cytometric analysis revealed that TC17 cells
coexpressed GATA-3, the lineage-defining tran-
scription factor (LDTF) for both TH2 cells and
group 2 ILC (ILC2) (Fig. 2A). Such a phenotype
was also detected among the very few CD8+

T cells present in the skin of naïve mice (fig.
S2A), and coexpression of RORgt and GATA-3
by S. epidermidis–specific BowieTg CD8+ T cells
was restricted to the skin and not detectable
in secondary lymphoid organs; these findings
suggested that GATA-3 expression is imprinted
within the tissue microenvironment (fig. S2B).
This phenotype was conserved across T cell
lineages and distinct microbial exposures. Nota-
bly, TH17 cells elicited by skin colonization with
S. epidermidis orCandida albicans also expressed
GATA-3 (Fig. 2B and fig. S2C). Thus, homeostatic
encounter with bacterial or fungal commensal
microbes can lead to the development of cells
with a paradoxical phenotype characterized by
the coexpression of classically antagonistic tran-
scription factors.
The skin is highly enriched in Foxp3+ regu-

latory T (Treg) cells (5), and confocal imaging re-

vealed colocalization of S. epidermidis–induced
CD8+ T cells and Foxp3+ Treg cells (Fig. 2C).
As such, we assessed the possibility that skin
Foxp3+ Treg cells could limit type 2 cytokine
production by commensal-specific type 17 cells.
Because complete ablation of Foxp3+ Treg cells
results in severe local and systemic inflamma-
tory responses and aberrant accumulation of
TC1 cells within the skin (11) (fig. S2, D and E), we
used an approach allowing for a tissue-specific
defect in immunoregulation. Within the skin,
Treg cells express high levels of GATA-3 (but not
other LDTFs) (Fig. 2D and fig. S2F), a factor
that contributes to Treg cell stability and fitness
(12–15). In mice in which Treg cells were condi-
tionally deleted of GATA-3 (Foxp3YFP-CreGata3fl/fl),
Foxp3+ cells were reduced in frequency and ex-
hibited decreased Foxp3 and CD25 expression
in the skin, but not in other tissues (Fig. 2E
and fig. S2, G and H). Consistent with this ob-
servation, by 10 weeks of age, skin-draining
lymph nodes (but not other lymphoid structures)
were enlarged, and the skin compartments (but
not other tissues) of these mice were charac-
terized by a selective increase in the number
of T cells producing IL-5 and IL-13 (Fig. 2, F and
G, and fig. S2, I to K). Enhanced type 2 responses

were associated with discrete elevated fre-
quencies and absolute numbers of eosinophils
and basophils in the skin of Foxp3YFP-CreGata3fl/fl

mice relative to control mice (Fig. 2H and fig.
S2L). Of note, and in agreement with a skin-
specific defect, naïve Foxp3YFP-CreGata3fl/fl mice,
with an endogenous skin microbiota but not
S. epidermidis, spontaneously developed severe
skin inflammation (but not systemic inflamma-
tion) with ~70% penetrance by 8 months of age
(Fig. 2, I and J).
To assess the possibility that T cells producing

type 2 cytokines within the skin of these mice
are commensal-specific, we colonized young
Foxp3YFP-CreGata3fl/fl mice (before inflammation)
and control mice with S. epidermidis and tracked
the fate of S. epidermidis–specific T cells. Adop-
tively transferred BowieTg CD8+ T cells (as well
as host polyclonal S. epidermidis–induced CD8+

T cells) expressed IL-5 and IL-13 proteins in the
skin of Foxp3YFP-CreGata3fl/fl mice but not con-
trol mice (Fig. 2, K to M). By contrast, the ability
of S. epidermidis–elicited CD8+ T cells to produce
IL-17A or IFN-g was unaffected (fig. S2M). Nota-
bly, type 2 cytokine production by S. epidermidis–
specific polyclonal and adoptively transferred
BowieTg CD8+ T cells remained restricted to cells
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expressing CCR6; this result shows that in the
context of local immune defects, type 2 cytokines
can be unleashed from RORgt-committed T cells
(Fig. 2M). Thus, impaired local immunoregu-
lation promotes type 2 cytokine production by
commensal-specific type 17 cells—a property that
may predispose tissue to inflammation.

S. epidermidis–specific TC17 cells harbor
a poised type 2 transcriptome

To gain insight into the transcriptional and epi-
genetic landscape of commensal-specific T cells
under homeostatic conditions, we identified
global regulatory elements shared between, and
unique to, S. epidermidis–specific polyclonal TC17
(CCR6+) and TC1 (CCR6

−) cells from the skin and
naïve and memory CD8+ T cells from lymphoid

tissue (16). Regulatory elements unique to skin
TC17 or TC1 cells were enriched in binding sites
for RORgt, and for T-bet and Eomes, respectively
(Fig. 3A), consistent with subset-specific expres-
sion of these LDTFs (Fig. 1F). Elevated chroma-
tin accessibility and transcript abundance of the
signature cytokines Ifng, Il17a, and Il17f also
confirmed the clear distinction between TC1 and
TC17 cell subsets (Fig. 3, B and C, and fig. S3, A
and B). Among regulatory elements unique to
TC17 cells, we identified previously described
GATA-3–binding sites within Il13 and the Rad50/
TH2 locus control region (17) (Fig. 3, D and E).
Consequently, TC17 cells demonstrated elevated
chromatin accessibility at type 2 immune gene
loci encoding Il5 and Il13 and expressed ele-
vated levels of Il5 and Il13 mRNA transcripts

relative to TC1 cells (Fig. 3, D to G, and fig. S3C).
Furthermore, TC17 cells expressed a broad type 2
transcriptome, including a LDTF (Gata3) and
cytokine and chemokine receptors (Ccr8, Il1rl1,
and Il17rb), but neither Il4 nor Il10 mRNA, as
previously described for tissue-derived TH2 cells
(18) (Fig. 3F and fig. S3D). The type 2–associated
cytokine amphiregulin (Areg) was detectable in
both cell subsets, albeit at higher abundance in
TC17 cells (fig. S3D). As such, commensal-specific
TC17 cells express a broad type 2 transcriptome
under homeostatic conditions.
Of S. epidermidis–induced TC17 cells, ~30%

displayed the potential for IL-17A production
(Fig. 1G), supporting the idea of possible pheno-
typic heterogeneity. However, using cells from IL-
17A fate-mapping mice (IL-17AFM–Il17aCreR26ReYFP)
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Holm-Šidák multiple-comparison test).
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and single-cell RNA sequencing (scRNA-seq),
t-distributed stochastic neighbor embedding
(tSNE) projection of TC1, IL-17A

FM+ TC17, and
IL-17AFM− TC17 cells demonstrated consider-
able transcriptional overlap between IL-17AFM+

and IL-17AFM− TC17 cell fractions, with type 2
cytokine mRNA–expressing cells present in both
fractions (Fig. 4, A and B, and fig. S4A). Thus,
commensal-specific TC17 cells, including those
already committed to IL-17A production, can be
superimposed with the expression of a type 2
transcriptome. Furthermore, in situ hybridiza-
tion for mRNA detection by flow cytometry
revealed that Il5 and Il13 transcripts, but not
protein, were expressed selectively by TC17 cells
from the skin of S. epidermidis–colonized mice
(Fig. 4C and fig. S4B). In line with our scRNA-
seq data (Fig. 4B and fig. S4A), Il5+ and Il13+

cells were found within both IL-17A–producing
and IL-17A–nonproducing fractions of TC17 cells
(Fig. 4, D and E); this suggests that during ho-
meostasis, commensal-specific TC17 cells express
type 2 cytokine mRNA without subsequent pro-
tein translation. The inducible deletion ofGata3
at the peak of the CD8+ T cell response to S.
epidermidis revealed that sustained GATA-3 ex-
pression by TC17 cells was required for the consti-
tutive expression of Il5 and Il13, but, as expected,
not for Il17a (Fig. 4F). Thus, S. epidermidis–specific
TC17 cells express a poised type 2 transcriptome
dependent on continued GATA-3 expression.
Accordingly, type 2 cytokine competency

(mRNA expression) and licensing (stimuli-
induced protein production) are temporally
decoupled in S. epidermidis–elicited TC17 cells—
a process likely involving the posttranscriptional
regulation of cytokine mRNA stability and pro-
tein translation. Under inflammatory conditions,
previous work revealed that distinct stimuli
can govern competency and licensing of type 2
immunity within injured tissues, ensuring
tissue-restricted effector function during path-
ogen infection (19). Recent findings also suggest
that IFN-g production by CD8+ T cells is actively
regulated at the level of translation, thereby
preventing chronic immune activation (20–22).

Alarmins license type 2 cytokine
production by commensal-specific
TC17 cells

Our work proposes that such a phenomenon
may also apply to commensal-specific T cells
generated under homeostatic conditions. To
identify the factors capable of licensing poised
type 2 immunity from commensal-specific T cells,
we used an ex vivo screening approach, stimu-
lating TC17 and TC1 cells with cytokines and
alarmins previously shown to be associated with
tissue damage. Cytokine stimulation alone did
not promote type 2 cytokine production by skin
T cells, demonstrating that these cells cannot be
licensed in a TCR-independent manner (fig. S5A).
Because commensal microbes persist within
the skin, this result is consistent with the ex-
pectation that exposure to alarmins will occur
in the context of antigen exposure. However,
in line with the role of IL-1 within the skin (4),

IL-1a significantly increased the ex vivo pro-
duction of IL-17A from TC17 cells in the context
of TCR stimulation (Fig. 5A). As previously re-
ported, IL-18 and IL-33 promoted IFN-g pro-
duction by TC1 cells (23, 24) (Fig. 5B). Notably,
several alarmins promoted the production of
IL-5 (IL-18, IL-25, and IL-33) or IL-13 (IL-1a,
IL-1b, IL-18, and IL-33) (Fig. 5, C and D). IL-25
potently promoted the production of IL-5 but
not IL-13 (Fig. 5, C and D), supporting the idea
that distinct classes of injury may have differ-
ent impacts on commensal-specific T cell re-
sponses. Strikingly, IL-18, a cytokine widely
linked to the initiation of type 1 responses, was
particularly potent at eliciting the release of
both IL-5 and IL-13 from TC17 cells ex vivo
(Fig. 5, C and D). IL-18 also promoted IL-17A
production by TC17 cells, further supporting
the idea that this alarmin can superimpose
type 2 responses upon a precommitted type 17
program (Fig. 5A). Under these conditions, IL-
4 and IL-10 were undetectable (fig. S5B), but
both TC1 and TC17 cells produced amphiregu-
lin upon TCR stimulation, a response that was
also enhanced by IL-18 (fig. S5C). Type 2 re-
sponses to IL-18 were not restricted to CD8+ T
cells nor to S. epidermidis–elicited cells. Indeed,
skin CD4+ T cells induced by S. epidermidis or
C. albicans colonization (including TH17 cells)
also produced higher levels of IL-5 and IL-13
upon IL-18 and TCR stimulation in vitro (fig. S5,
D to F). Thus, such poised type 2 potential may
be the norm for type 17 commensal-specific T
cells raised under homeostatic conditions. In
this context, local inflammatory factors includ-
ing IL-1, IL-18, IL-25, and IL-33 can superimpose
a type 2 effector program.
To assess the impact of a single defined

alarmin on commensal-specific T cells, we next
focused on the impact of IL-18 in vivo. A single
injection of IL-18 licensed both IL-5 and IL-13
protein production by S. epidermidis–elicited
TC17 (including f-MIIINA:H2-M3+ cells) and
CD4+ T cells (including TH17 cells) (Fig. 5, E to
G, and fig. S5, G and H). Type 2 cytokine li-
censing by IL-18 occurred at the expense of
IL-17A production, suggesting dynamic regu-
lation of cytokine production by commensal-
specific TC17 and TH17 cells in vivo (Fig. 5, E
to G). The ability of TC17 and TH17 cells to pro-
duce type 2 cytokines in response to IL-18 was
dependent on T cell–intrinsic IL-18R1 signaling
(Fig. 5, H and I) and was sustained up to 60 days
after colonization (fig. S5I). After chitin injection,
type 2 licensing of TC17 and TH17 cells was also
IL-18R1 signaling–dependent (Fig. 5, H and I);
these findings support the idea that in defined
inflammatory settings, IL-18 alone may be suf-
ficient to impose this response.

Commensal-specific T cell plasticity and
IL-13 production promote wound repair

The co-production of cytokines associated with
distinct T cell subsets can occur during inflam-
mation. For example, IL-17A+IFN-g+ cells are
present during intestinal and central nervous
system inflammation, and IL-17A+IL-4+ cells

are found during allergic asthma and helminth
infection (25–29). Previous studies also demon-
strated plasticity of effector TH17 cells to convert
to TH1, follicular helper (TFH), and Treg cell
phenotypes in a context-dependent manner
(26, 30, 31). Our work supports the idea that
such plasticity may be a fundamental fea-
ture of tissue-resident commensal-specific T
cells. To specifically address this point, we used
IL-17AFM mice to assess in vivo the heritage of
TC17 cells licensed for type 2 cytokine produc-
tion. In line with the finding that both IL-
17AFM− and IL-17AFM+ TC17 cells display poised
Il5 and Il13 mRNA expression (Fig. 4, B to E),
IL-18 triggered type 2 cytokine production
from both TC17 and TH17 cells regardless of
whether they had previously expressed IL-17A
(IL-17AFM+ and IL-17AFM−) (Fig. 6, A and B).
Thus, within commensal-induced TC17 and TH17
cell populations, plasticity among IL-17AFM+ cells
and local licensing of IL-17AFM− cells both con-
tribute to alarmin-mediated induction of type 2
cytokine production.
Although a few reports have suggested that

IL-18 can potentially promote type 2 and reg-
ulatory responses (32–34), this cytokine is more
widely considered to promote type 1 immunity.
In support of a major role for IL-18 in the
promotion of skin type 2 responses, IL-18 in-
jection promoted type 2 cytokine production
not only by T cells but also by ILC2, as re-
cently described (Fig. 6C) (35). In contrast to
transient ILC2 responses, induction of type 2
cytokine expression by T cells was sustained
up to 4 days after injection (Fig. 6C). Thus,
type 2 cytokine licensing by IL-18 may have a
profound effect on skin physiology via the
broad impact of a defined alarmin on both
tissue-resident commensal-specific T cells and
ILC2 (35). Indeed, IL-18 injection promoted
an IL-5–dependent eosinophil accumulation
within the skin compartment of S. epidermidis–
colonized mice (Fig. 6D and fig. S6A). Thus,
tissue-resident commensal-specific type 17 T
cells can adapt to defined injury by direct sen-
sing of alarmins and inflammatory mediators.
Because of the known contribution of type 2

immunity and IL-13 in particular to tissue re-
pair, we next used a model of skin wounding
to assess the potential contribution of commensal-
specific type 2 cytokine licensing to this funda-
mental process. Although IL-13 did not contribute
to the healing process in unassociated mice,
IL-13 neutralization or genetic Il13 deficiency
impaired S. epidermidis–accelerated wound re-
pair (Fig. 6, E and F). Adoptive transfer of wild-
type BowieTg CD8+ T cells rescued this defect
in an IL-13–dependent manner (Fig. 6F). In agree-
ment with the role of IL-13 in tissue repair
(36), whole-tissue RNA-seq of skin after wound-
ing revealed an IL-13–dependent transcriptional
signature dominated by pathways associated
with muscle contractility and extracellular matrix
reorganization (Fig. 6G and fig. S6B). Notably, in
line with the fact that punch biopsies can trigger
the release of numerous factors able to license
type 17 cells (Fig. 5, C andD), IL-18was insufficient
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to promote these responses (fig. S6C). Thus, the
poised type 2 immune potential of commensal-
specific TC17 cells allows for local adaptation to
injury, thereby promoting tissue repair.

Conclusion

Barrier tissues are constitutively exposed to en-
vironmental stressors and are primary targets of
chronic inflammatory disorders. The mainte-
nance of tissue integrity and function represent
a complex challenge that requires both resilience
and adaptation. Under steady-state conditions,
tissue resilience is, in part, mediated by innate
and adaptive immunity to the microbiota, which
reinforces barrier function and immunity (5).

Our results show that adaptation of tissue to
injuries can also be mediated by immunity to
the microbiota, a fundamental but poorly under-
stood class of immunity. Notably, we found that
homeostatic immunity to bacteria or fungal com-
mensals is characterized by the coexpression of
paradoxical programs, allowing commensal-
specific T cells, when entering and persisting
within tissues, to adopt a type 17 program com-
patible with tissue homeostasis and immunity
while maintaining a type 2–poised state. As such,
in the context of injury and consequent exposure
to inflammatory mediators and cognate antigens,
commensal-specific T cells rapidly release type 2
cytokines, allowing these cells to exert pleiotropic

and contextual functions including tissue repair.
Thus, we describe a tissue checkpoint that relies
on the remarkable plasticity and adaptability of
tissue-resident commensal-specific T cells. We pro-
pose that this feature may also have important
implications in the etiology of tissue-specific
inflammatory disorders. Given the extraordinary
number of both commensal-derived antigens and
T cells at barrier sites, such a featuremay represent
a fundamental component of host immunity.

Materials and methods
Mice

Wild-type (WT) C57BL/6 Specific Pathogen
Free (SPF) mice were purchased from Taconic
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Biosciences. Gata3fl/fl (37), Foxp3YFP-Cre (38) and
Il17aCre (26) have been previously described and
were generously provided by J. Zhu (NIAID,NIH),
A. Rudensky (Memorial Sloan Kettering Cancer
Center), and B. Stockinger (Francis Crick Insti-
tute), respectively. Foxp3gfp (39), CD45.1 (B6.SJL-
Ptprca Pepcb/BoyJ), Tcra−/− (B6.129S2-Tcratm1Mom/J)
(40), CD45.1 Rag1−/−, Il13−/− (41), and CreERT2-
Gata3fl/fl mice (42) were purchased from the

NIAID-Taconic Exchange. Tcra+/− mice were
generated by breeding Tcra−/− mice with C57BL/6
WT mice. Foxp3DTR (B6.129(Cg)-Foxp3tm3(DTR/GFP)

Ayr/J) (11) and R26ReYFP (B6.129X1-Gt(ROSA)
26Sortm1(EYFP)Cos/J) (43) mice were purchased
from The Jackson Laboratory. CD4CreIl18r1fl/fl

and Il18r1fl/fl control mice were kindly provided
by G. Trinchieri (NCI, NIH). All mice were bred
and maintained under SPF conditions at an

American Association for the Accreditation of
Laboratory Animal Care (AAALAC)–accredited
animal facility at NIAID and housed in accord-
ance with the procedures outlined in the Guide
for the Care and Use of Laboratory Animals. All
experiments were performed at NIAID under an
Animal Study Proposal (LPD-11E or LPD-68E)
approved by the NIAID Animal Care and Use
Committee. Sex- and age-matchedmice between
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Fig. 6. Commensal-specific T cell plasticity and IL-13 production
promote wound repair. (A) Representative contour plots for gating
strategy of CCR6 and eYFP (enhanced yellow fluorescent protein)
expression by CD8+ T cells from the skin of S. epidermidis–colonized
Il17aCreR26ReYFP (IL-17AFM) mice after i.d. injection of PBS or IL-18.

Contour plots represent IL-5 and IL-17A production potential of IL-17AFM+ TC17 (CD8+CCR6+eYFP+) or IL-17AFM− TC17 (CD8+CCR6+eYFP−) T cells after
i.d. injection of PBS or IL-18. (B) Frequencies of TH17 cells with IL-17A– or IL-5–producing potential from the skin of S. epidermidis–colonized IL-17AFM

mice after i.d. injection of PBS or IL-18. (C) Absolute cell number of IL-5– and IL-13–producing lymphocyte subsets in the skin of S. epidermidis–colonized
wild-type mice after i.d. injection of IL-18. Data are means ± SD of five mice per group. (D) Absolute number of eosinophils from the skin of S. epidermidis–
colonized wild-type mice after i.d. injection with PBS or IL-18, and i.p. injection with anti–IL-5 or isotype control. (E and F) Naïve and S. epidermidis–colonized
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wounding, were subjected to back-skin punch biopsy. Epithelial tongue length of wound bed–infiltrating keratinocytes was quantified 5 days after wounding.
(G) Pathway analysis using differentially expressed genes between d3 isotype and d3 anti–IL-13 wounding groups was performed using Enrichr and graphed
according to enrichment score for significant Reactome biological processes. Numbers in representative plots indicate means ± SD. Bar graphs show
means ± SD. Data represent at least two experiments with three to seven mice per group. *P < 0.05, **P < 0.01, ***P < 0.001 as calculated using one-way [(A),
(B), (D)] or two-way [(E), (F)] ANOVA with Holm-Šidák multiple-comparison test.
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6 and 35 weeks of age were used for each
experiment.

Commensal culture and colonization

Staphylococcus epidermidisNIHLM087 (44) was
cultured for 18 hours in Tryptic Soy Broth at
37°C. Candida albicans (8) was cultured for
18 hours in Tryptic Soy Broth at 37°C (shaking
180 rpm). For colonization with commensal
microbes, as before (45), each mouse was topically
associated by placing 5 ml of culture suspension
(approximately 109 CFU/ml) across the entire
skin surface (approximately 36 cm2) using a sterile
swab. Application of commensal microbes was
repeated every other day a total of four times. Skin
tissue was analyzed 14 days after initial coloniza-
tion, unless otherwise indicated.

Inducible deletion of Gata3

Deletion of Gata3 in CreERT2Gata3fl/fl mice was
induced by intraperitoneal injection of 5 mg
tamoxifen in a corn oil–ethanol (90:10) mixture
daily for 3 days before cellular isolation and sub-
sequent analysis.

Global Treg cell depletion

Naïve or S. epidermidis–colonized Foxp3DTR mice
received ~1 mg (50 mg/kg) of diphtheria toxin
(Sigma-Aldrich) in phosphate-buffered saline
(PBS), or PBS alone, by intraperitoneal (i.p.)
injection on days 3, 5, 7, and 9 after initial S.
epidermidis colonization. Flow cytometric anal-
ysis of skin leukocytes was performed 12 days
after initial colonization.

Generation of BowieTg mice

Tcra+/−mice were colonized with S. epidermidis,
and CD8+CCR6+ T cells were isolated from skin
tissue by fluorescence-activated cell sorting (FACS)
and subjected to single-cell sequencing of TCR a
and b chains (46). Clonal TCR pairs were identified
and used in a hybridoma reconstitution screen-
ing assay to identify S. epidermidis–reactive TCR
heterodimers. A single S. epidermidis–specific TCR
pair was cloned into a hCD2-expression vector
(47) and used to generate TCR-transgenic mice
(BowieTg), to track S. epidermidis–specific T cells
in vivo.

Adoptive transfer of BowieTg CD8+ T cells

BowieTgmicewere backcrossed to a CD45.1Rag1−/−

background to exclude the possibility of dual
TCR expression and facilitate identification of
transferred cells. Recipient mice (CD45.2) re-
ceived 4× 105 BowieTg CD45.1Rag1−/−CD8+ T cells
by intravenous injection 24 hours before the first
application of S. epidermidis.

Parabiosis experiments and surgery

Congenically distinct, age- and weight-matched
mice were co-housed for 2 weeks before coloniza-
tionwith S. epidermidis. Bothmicewere colonized
to control for bacterial spread. Forty days after
initial colonization, parabiosis surgery was per-
formedas described (10). Briefly,micewere sedated
and longitudinal incisions were made from the
elbow to the knee joint of eachmouse. Excess skin

was removed and mice were joined at the joints.
The skin of the two animals was then connected
and sutured together. Animals were kept on oral
antibiotics for 2 weeks and remained conjoined
for 90 to 95 days before analysis. Analysis was
performed on ear pinnae skin tissue.

Acute intradermal challenge

S. epidermidis–colonizedmicewere anesthetized
with ketamine-xylazine and injected intrader-
mally (10 ml per ear pinnae) with either sterile
PBS (vehicle control), 250 ng of carrier-free re-
combinant IL-18 (R&D Systems), or 500 ng of
chitin (Sigma-Aldrich). Unless otherwise indicated,
skin tissue was analyzed for cytokine production
potential 48 hours after injury.

Sand fly bite exposure

S. epidermidis–colonized mice were exposed to
sand fly bites as described (48). Briefly, mice were
anesthetized with ketamine-xylazine. Twenty fe-
male Lutzomiya longipalpuswere transferred to
plastic vials (volume 12.2 cm2, height 4.8 cm, di-
ameter 1.8 cm) covered at one end with 0.25 mm
of nylon mesh. Specially designed clamps were
used to bring the mesh end of each vial flat
against the ear, allowing flies to feed on exposed
skin for a period of 1 hour in the dark at 26°C and
50% humidity. The number of flies with blood
meals was employed as a means of checking for
equivalent exposure to bites among animals. At
indicated time points after exposure, tissues were
analyzed for cytokine production.

Ex vivo cytokine screening

CD4+ and CD8+ T cell subsets from the skin of
S. epidermidis– or C. albicans–colonized mice
were isolated by FACS (> 97% purity) and cul-
tured for 24 hours in the presence of cytokines
(IL-1a, IL-1b, IL-18, IL-25, IL-33, or TSLP; R&D
Systems) (10 ng/ml) and presence or absence of
TCR stimulation (1 mg/ml plate bound anti-CD3
mAb, clone 145-2C11). Culture supernatants were
assayed for cytokine production by FlowCytomix
bead array (eBioscience).

Tissue processing

Cells from the skin-draining lymph nodes, spleen,
and ear pinnae were isolated as described (6).
Cells from lymph nodes and spleen weremashed
through a 70-mm cell strainer to generate single-
cell suspensions. Ear pinnae were excised and
separated into ventral and dorsal sheets. Ear
pinnae were digested in RPMI 1640 media sup-
plemented with 2mM L-glutamine, 1 mM sodium
pyruvate, 1 mM non-essential amino acids, 50 mM
b-mercaptoethanol, 20 mM HEPES, 100 U/ml of
penicillin, 100 mg/ml of streptomycin, and
0.25 mg/ml of Liberase TL purified enzyme blend
(Roche), and incubated for 90min at 37°C and 5%
CO2. Digested skin sheets were homogenized
using the Medicon/Medimachine tissue homog-
enizer system (Becton Dickinson).

In vitro restimulation

For detection of basal cytokine potential, single-
cell suspensions from various tissues were cul-

tured directly ex vivo in a 96-well U-bottom plate
in complete medium (RPMI 1640 supplemented
with 10% fetal bovine serum, 2 mM L-glutamine,
1 mM sodiumpyruvate, 1 mMnonessential amino
acids, 20mMHEPES, 100 U/ml penicillin, 100 mg/
ml streptomycin, and 50 mM b-mercaptoethanol)
and stimulated with 50 ng/ml of phorbol myris-
tate acetate (PMA) (Sigma-Aldrich) and 5 mg/ml
of ionomycin (Sigma-Aldrich) in the presence of
brefeldin A (1:1000, GolgiPlug, BD Biosciences)
for 3 hours at 37°C in 5% CO2. After stimulation,
cells were assessed for intracellular cytokine pro-
duction as described below.

Flow cytometric analysis

Single-cell suspensions were incubated with com-
binations of fluorophore-conjugated antibodies
against the following surfacemarkers: CCR6 (29-
2L17), CD3e (145-2C11), CD4 (RM4-5), CD8b (53-
6.7), CD11b (M1/70), CD19 (6D5), CD44 (IM7),
CD45 (30-F11), CD45.1 (A20), CD45.2 (104), CD69
(H1.2F3), CD103 (2E7), MHCII (M5/114.15.2), TCRb
(H57-597), and/or Thy1.2 (30-H12) in Hank’s buf-
fered salt solution (HBSS) for 20min at 4°C (RT for
30 min for CCR6) and then washed. LIVE/DEAD
Fixable Blue Dead Cell Stain Kit (Invitrogen Life
Technologies) was used to exclude dead cells. Cells
were then fixed for 30min at 4°CusingBDCytofix/
Cytoperm (Becton Dickinson) and washed twice.
For intracellular cytokine staining, cells were
stained with fluorophore-conjugated antibodies
against IFN-g (XMG-1.2), IL-5 (TRK5), IL-13
(eBio13A), and IL-17A (eBio17B7) inBDPerm/Wash
Buffer (Becton Dickinson) for 60 min at 4°C. For
transcription factor staining, cells were fixed and
permeabilized with the Foxp3/Transcription Fac-
tor staining buffer set (eBioscience) and stained
with fluorophore-conjugated antibodies against
Foxp3 (FJK-16s), GATA-3 (L50-823 or TWAJ),
RORgt (B2D), or T-bet (eBio4B10) for 45 min at
4°C. Each staining was performed in the presence
of purified anti-mouse CD16/32 (clone 93) and
purified rat gamma globulin (Jackson Immuno-
research). All antibodies were purchased from
eBioscience, Biolegend, BDBiosciences, orMiltenyi
Biotec. Cell acquisition was performed on a BD
Fortessa X-20 flow cytometer using FACSDiVa
software (BDBiosciences) and datawere analyzed
using FlowJo software (TreeStar).

RNA staining

Skin tissue single-cell suspensions were analyzed
for mRNA and protein expression using the
PrimeFlowRNA assay (eBioscience) and standard
mouse probe sets for Ifng, Il5, Il13, and Il17a, as
per manufacturer’s instructions for 96-well-plate
staining.

Tetramer-based cell enrichment

f-MIIINA:H2-M3-specific CD8+ T cells from sec-
ondary lymphoidorganswere subjected tomagnetic
bead based enrichment, as previously described
(49). Briefly, spleen and lymph node cells from
parabiotic pairs were stained for 1 hour at room
temperature with f-MIIINA:H2-M3-streptavidin-
phycoerythrin (PE) tetramer. Samples were then
incubated with anti-PE beads (Miltenyi Biotech)
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and enriched for bead-bound cells onmagnetized
columns.

RNA-sequencing and
transcriptome analysis

T cellswere isolated by flow cytometric cell sorting
from the ear skin tissue of C57BL/6 mice 2 weeks
after colonizationwith S. epidermidisNIHLM087.
Groups included: TC1 (Viable Lineage

−CD45+

CD90.2+TCRb+CD8b+CCR6−) andTC17 cells (Viable
Lineage−CD45+CD90.2+TCRb+CD8b+CCR6+).
Sorted cells were lysed in Trizol reagent and
total RNA isolated by phenol-chloroform extrac-
tion with GlycoBlue as a co-precipitant (7 mg per
sample; Life Technologies). Single-end libraries
were prepared with 0.25 to 1 mg of total RNA
using the TruSeq RNA Sample Preparation Kit
V2 and sequenced for 50 cycles with a HiSeq
2500 instrument (4 to 6 samples multiplexed
per lane; Illumina). Sequencing quality of the
raw read data was assessed using FASTQC
v0.11.5. Using a custom Perl script, 10 bp were
trimmed from the 3′ end of the 50-bp reads. Sub-
sequently, FASTQ files were used as input for
RSEM v1.3.0 (50) (internally configured to use
the bowtie aligner, v1.1.1). Expected read counts
from RSEM were imported into the DESeq2
Bioconductor package (51), normalized using the
geometric-mean based approach built into this
package and then tested for differential expres-
sion between groups using aWald test with mul-
tiple testing correction using Benjamini-Hochberg
false discovery.

ATAC sequencing and epigenome analysis

T cells were isolated as for RNA sequencing.
ATAC-seqwas performed according to a published
protocol (16). ATAC-seq reads from two biological
replicates for each sample were mapped to the
mouse genome (mm10 assembly) using STAR (52).
Duplicate reads were removed using FastUniq
(53), and reads mapping to mitochondrial loci
removed based uponENCODE blacklists. Regions
of open chromatin were identified by MACS
(version 1.4.2) using a P-value threshold of 1 ×
10−5. Only regions called in both replicates were
used in downstream analysis. Downstream
analysis and heatmap generation were per-
formed with the Hypergeometric Optimization
of Motif EnRichment program (HOMER) ver-
sion 4.8 (54).

Single-cell RNA sequencing

T cells were isolated as for bulk RNA sequencing,
from S. epidermidis–colonized IL-17A-fate-mapping
mice, with three groups: TC1 (Viable Lineage

−

CD45+CD90.2+TCRb+CD8b+CCR6−), TC17 IL-17A
FM−

(Viable Lineage−CD45+CD90.2+TCRb+CD8b+

CCR6+eYFP−), andTC17 IL-17A
FM+ (ViableLineage−

CD45+CD90.2+TCRb+CD8b+CCR6+eYFP+). Freshly
isolated cells were encapsulated into drop-
lets, and libraries prepared using Chromium
Single Cell 3′ Reagent Kits v2 (10X Genomics).
The generated scRNA-seq libraries were seq-
uenced using 26 cycles of Read 1, 8 cycles of i7
Index, and 98 cycles of Read2 with a HiSeq 3000
(Illumina).

Single-cell RNA sequencing analysis
Sequence reads were processed and aggregated
using Cell Ranger software. Aggregated data were
further analyzed using Seurat (55).

Confocal microscopy

Ear pinnae were split with forceps, fixed in 1%
paraformaldehyde in PBS (Electron Microscopy
Sciences) overnight at 4°C, and blocked in 1%
BSA + 0.25% Triton X in PBS for 2 hours at room
temperature. Tissues were first stainedwith anti-
CD4 (RM4-5, eBioscience), anti-CD8a (clone 53-
6.7, eBioscience), anti-CD45.1 (A20, eBioscience),
anti-CD49f (GoH3, eBioscience), and/or anti-GFP
(A21311, Life Technologies) antibodies overnight
at 4°C, washed three times with PBS and then
stained with 4,6-diamidino-2-phenylindole (DAPI,
Sigma-Aldrich) overnight before being mounted
with ProLong Gold (Molecular Probes) antifade
reagent. Ear pinnae images were captured on a
Leica TCS SP8 confocal microscope equipped
with HyD and PMT detectors and a 40× oil ob-
jective (HC PL APO 40×/1.3 oil). Images were
analyzed using Imaris software (Bitplane).

Back-skin wounding and epifluorescence
microscopy of back-skin wounds

Tissue wounding and quantitation of wound
healing were performed as previously described
(56). Briefly, male mice in the telogen phase of
thehair cyclewere anesthetized andpunchbiopsies
performed on back skin. Dorsal hair was shaved
with clippers and a 6-mmbiopsy punchwas used
to partially perforate the skin. Iris scissors were
then used to cut epidermal and dermal tissue to
create a full thickness wound in a circular shape.
Back-skin tissue was excised 5 days after wound-
ing, fixed in 4% paraformaldehyde in PBS, incu-
bated overnight in 30% sucrose in PBS, embedded
in OCT compound (Tissue-Tek), frozen on dry
ice, and cryo-sectioned (20-mm section thickness).
Sections were fixed in 4% paraformaldehyde in
PBS, rinsed with PBS, permeabilized with 0.1%
Triton X-100 in PBS (Sigma-Aldrich), and blocked
for 1 hour in blocking buffer (2.5% Normal Goat
Serum, 1% BSA, 0.3% Triton X-100 in PBS). Pri-
mary antibody to Keratin 14 (chicken, Poly9060,
1:400, Biolegend) was diluted in blocking buffer
with rat gamma globulin and anti-CD16/32 and
incubated overnight. After washing with PBS, a
secondary antibody conjugated with Alexa647
(goat anti-chicken, Jackson ImmunoResearch)
was added for 1 hour at room temperature.
Slides were washed with PBS, counterstained
with DAPI andmounted in Prolong Gold.Wound
images were captured with a Leica DMI 6000
widefield epifluorescence microscope equipped
with aLeicaDFC360Xmonochrome camera. Tiled
and stitched images of wounds were collected
using a 20×/0.4NA dry objective. Images were
analyzed using Imaris software (Bitplane).

In vivo cytokine blockade

Naïve or S. epidermidis–colonized WT or Il13−/−

mice received 0.5 mg of anti–IL-13 monoclonal
antibody (clone 262A-5-1, Genentech) or mouse
IgG1 isotype control (clone MOPC-21, BioXCell),

or 1 mg of anti–IL-5 monoclonal antibody (clone
TRFK5, BioXCell) or rat IgG1 isotype control
(clone TNP6A7, BioXCell), or 1 mg of anti–IL-18
monoclonal antibody [clone SK113AE-4 (57)] or
isotype control by i.p. injection 1 day before skin
injury.

Total tissue RNA-seq

A ~1-mm skin region surrounding the wound
site was microdissected at indicated time points
after wounding, submerged in RNAlater (Sigma-
Aldrich), and stored at −20°C. Total tissue RNA
was isolated from skin tissue using the RNeasy
Fibrous Tissue Mini kit (Qiagen), as per manu-
facturer’s instructions. A 3′ mRNA sequencing
library was prepared using 200 to 500 ng of total
input RNA with the QuantSeq 3′ mRNA-Seq
Library Prep Kit FWD for Illumina (Lexogen) as
per manufacturer’s instructions. Libraries were
quantified using an Agilent Tapestation (High
Sensitivity D1000 ScreenTape) andQubit (Thermo
Fisher Scientific). Libraries (n= 20) were pooled at
equimolar concentrations and sequenced on an
Illumina Nextseq 500 using the High Output v2
kit (75 cycles). Resultant data was demultiplexed
on Illumina Basespace server using blc2fastq
tool. The reads from the Illumina Next-seq se-
quencer in fastq format were verified for qual-
ity control using FastQC software package,
aligned to mouse GRCM38 using RSEM package
(50) calling STAR aligner (52). TheRSEMexpected
counts were rounded to the nearest integer value
and the transcripts with zero counts across all
samples filtered out. Differential expression anal-
ysis and principal components analysis was per-
formed using DESeq2 (51).

Statistics

Groups were comparedwith PrismV7.0 software
(GraphPad) using the two-tailed unpaired Stu-
dent t test, one-way analysis of variance (ANOVA)
withHolm-Šidákmultiple-comparison test, or two-
wayANOVAwithHolm-Šidákmultiple-comparison
testwhere appropriate. Differenceswere considered
to be statistically significant when P < 0.05.
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homeostatic conditions but rapidly turn on tissue repair in the context of injury.
T cells to turn on type 2 cytokines. Thus, commensal-specific type 17 T cells can direct antimicrobial activity under 

tissue repair (type 2) programs. When skin is damaged, epithelial cell alarmins license type 17−and antiparasite and pro
 T cells have a dual nature: They coexpress transcription factors that direct antagonistic antimicrobial (type 17) +CD8

 and+producing CD4− show that subsets of skin-resident commensal-specific interleukin-17Aet al.tissue repair. Harrison 
cells. These encounters can result in commensal-specific T cell responses that promote, for example, host defense and 

Barrier tissues, like the skin, are sites where noninvasive commensal microbes constantly interact with resident T
Commensal-specific T cells are flexible
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